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Space - Time Power Transient

The power transient produced by coolant voiding following a LOCA must be modeled in
three dimensions in CANDU reactors, because of the local effects of reactivity changes on the
neutron flux. The time-dependent diffusion equation is:

PM+FﬂMEﬁ+2&QGﬁ=%%¥Zz

Flp(r,t) - A,C(r,t) =

ICED i _16)
o1

in the usual notation.

These equations are solved either with spatial finite differences and the improved
quasistatic (IQS) model in the CERBERUS code or with the modal expansion method utilized in
the SMOKIN code. Time-dependent cross sections representing the coolant-voiding transient,
fuel temperature transient, reactor control system action, and shutoff rod movement are the
driving functions for the neutron flux transient. The space-dependence of coolant void produces a
flux tilt in the horizontal direction, and shutoff rod insertion (SDS1) results in a major depression
in the central region of the reactor core. These tilts are represented qualitatively in Figure 9.1.
The average power transient for the reactor is extracted from the calculation along with peaking
factors for the average channel and the hot element in the loop being analyzed. The system
reactivity as a function of importance - weighted void fraction also is calculated. These data are
used as input to the thermal-hydraulics code SOPHT. This code calculates the distribution of
coolant void as a function of time from the pipe break, for each pass of the coolant loop. The
importance-weighted average void fraction calculated by SOPHT is combined with the pre-
calculated reactivity function, and the average reactor power then are recalculated using a point
kinetics model. Peaking factors are applied to the average power transient as appropriate for each
channel being modeled by SOPHT. Fission product decay power is added to the neutron power.

Typical neutron power transients are shown in Figure 9.2. The decay power shown in
Figure 9.3 is fitted to a sum of three exponential terms.
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FIGURE 9.1
SPATIAL POWER TRANSIENT DUE TO ONE-LOOP VOIDING
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Fuel and Fuel Channel Behavior

Figures 9.4 to 9.12 summarize the behavior of fuel channels following a large LOCA.
Channels are grouped into three categories (Fig. 9.4) depending on the amount of stored heat
removed during blowdown. Typical values are shown in Fig. 9.5. The time-dependent
temp erature behavior of these three groups is shown in Fig. 9.6; blowdown may be followed by a
prolonged stagnation period that is terminated by channel refill and rewet. Pressure tube
ballooning (high internal pressure) or sagging (low internal pressure) takes place sometime during
the blowdown/stagnation period. The coolant starvation time (Fig 9.7) is determined by the
calculated steam flow in the channel. Radial heat transfer models for normal, sagged, and ballooned
channels are shown in Fig. 9.8; the axial geometry of a ballooned channel is shown in Fig. 9.9. The
elements of the channel heat transfer model are shown in Fig. 9.10; typical results as a function of
time (9.11) and axial channel position (9.12) indicate the characteristics of a steam-cooled channel
prior to refill by the emergency injection system. Figures 9.13 to 9.15 show total fission product
inventories, release characteristics, and typical release fractions calculated for a major LOCA in
Bruce B.

EARLY HEAT-UP: THIS TYPE OF BEHAVIOR RESULTS FROM EARLY STAGNATION
OF THE COOLANT FLOW. FOLLOWED BY A PROLONGED PERIOD OF COOLING BY
A LOW STEAM FLOW. LITTLE OF THE FUEL STORED HEAT IS REMOVED DURING
THE RAPID VOIDING OF THE CHANNELS, AND THE TEMPERATURE OF THE FUEL
SHEATHS AND PRESSURE TUBE RISE RAPIDLY. EARLY FUEL FAILURES MAY
OCCUR, AND THE HOT PRESSURE TUBE MAY STRAIN DIAMETRICALLY TO
CONTACT ITS CALANDRIA TUBE. THIS LATTER PHENOMENON IS REFERRED TO
AS PRESSURE TUBE BALLOONING.
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DELAYED HEAT-UP: THE FUEL STORED ENERGY IS PARTIALLY REMOVED BY
LIQUID AND TWO-PHASE COOLANT PRIOR TO THE ONSET OF A PROLONGED
STEAM COOLING PERIOD, RESULTING IN A SLOWER HEAT-UP WITHIN THE
CHANNEL RELATIVE TO THE EARLY HEAT-UP CHANNELS. BY THE TIME THE
PRESSURE TUBE TEMPERATURE RISES SIGNIFICANTLY, THE SYSTEM PRESSURE IS
SUFFICIENTLY LOW SUCH THAT ONLY ASYMETRIC PRESSURE-TUBE/CALANDRIA
TUBE CONTACT OCCURS, BY A COMBINATION OF PRESSURE-TUBE SAGGING
AND BALLOONING.

LATE HEAT-UP: MOST OF THE FUEL STORED IS REMOVED PRIOR TO THE ONSET
OF STEAM COOLING, AND HEAT-UP BEGINS FROM FUEL AND PRESSURE TUBE
TEMPERATURES NEAR COOLANT SATURATION TEMPERATURE. TEMPERATURES
INCREASE VERY SLOWLY RELATIVE TO CATEGORIES (A) AND (B), AND ANY
PRESSURE TUBE DEFORMATION WILL BE BY SAGGING ONLY.

Figure 9.4 — Characterization of behaviour of fuel channels under different post-LOCA
conditions
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FIGURE 9.5
NET ENERGY DEPOSITED IN HOT CHANNEL DURING CHANNEL VOIDING PERIOD
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Notes:

a) Isotope with highest fractienal Inventory (on core basis) from a number of species examined.
bj All Isotopes of the group are assumed to have this fractional invantory, although most of thern will have a lower fraction.

(*) 1EBq=10" Bq
(**) 1PBq=10" Bq
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Total Release
During Accident Ultimate Release
Fission Product Group (% Core Inventory) | (% Core Inventory)

Noble Gas (t=10 h)* 0.57 1.01
o, Noble Gas (10 h<t<20 d) 1.15 1.59
3 3 § | Noble Gas (t=20 d) 2.37 2.81
g § g Halogens (t=10 h) 0.86 1.30
5 § | Halogens (10 h<t<10 d) 1.63 2.07
gfg 5 | Long lived Alkali Metals 3.75 419
w Intermediate Lived Chalcogens 1.29 1.73
Long Lived Alkaline Earths 1.37 1.81
Noble Gas (t=10 h) 0.16 0.67
£ 2 § | Noble Gas (10 h<t<20 d) 0.28 0.79
g g € | Noble Gas (=20 d) 1.00 1.51
39 & | Halogens (t<10 h) 0.20 0.71
& =8 | Halogens (10 h<t<10 d) 0.52 1.03
&-’ g % Long lived Alkali Metals 212 2.63
© = | Intermediate Lived Chalcogens 0.35 0.86
Long Lived Alkaline Earths 0.38 0.89
Noble Gas (t=10 h)* 0.10 0.60
o § Noble Gas (10 h<t<20 d) 0.16 0.66
8= 5 | Noble Gas (t=20 d) 0.68 1.18
§x ‘g Halogens (t=10 h) 0.12 0.62
5Z & | Halogens (10 h<t<10d) 0.30 0.80
gg S | Long lived Alkali Metals 1.48 1.98
we Intermediate Lived Chalcogens 0.20 0.70
Long Lived Alkaline Earths 0.22 0.72

*“t= half-life

FIGURE 9.15

LONG-TERM ACTIVITY RELEASE FROM THE FUEL FOR A LARGE BREAK LOCA
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Moderator Thermal-Hydraulics

When pressure tubes contact calandria tubes, either by ballooning or sagging, the heat
transfer rate to the moderator increases abruptly. If this heat flux exceeds the critical heat flux for
that channel, the calandria tube will dry out. Since the post-dryout heat transfer coefficient is
very low, the calandria tube would be effectively insulated on its outer surface, so its temperature
would increase rapidly. This picture must be modified by the recognition that the pressure tube

Rev. 1, Oct. 2003
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contact may be local, particularly for sagging contact. Radial and axial heat transfer through the
calandria tube would tend to control its temperature; in addition, the boiling water on the outer
surface would produce buoyancy flow that would promote cooling. Experiments have shown that
calandria tubes do not remain dry for an extended period, even when the initial heat flux on contact
is well beyond the dryout level. Nevertheless, for purposes of licensing, dryout has been taken to
be the safety limit. Figure 9.16 shows the results of dryout experiments in simulated full-scale
fuel channels. The key question is: what is the maximum permitted temperature in the
surrounding moderator water before contact, such that dryout will not occur? (The critical heat
flux decreases as the amount of pre-contact subcooling decreases). It can be seen from Fig. 9.16
that the subcooling required to prevent dryout increases with contact temperature and decreases
with the contact pressure between pressure tube and calandria tube. These effects indicate that
there must be an upper limit to the required subcooling, because (a) the pressure tube cannot be
heated at a rate higher than adiabatic, (b) sagging or ballooning will occur when a certain
temperature is reached, and (c¢) higher temperature at contact accompanies lower internal and
therefore lower contact pressure. The maximum contact temperatures are plotted in Figure 9.17.

Rev. 1, Oct. 2003
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Pressure Tube Contact Temperature (C)

FIGURE 9.16
CALANDRIA TUBE DRYOUT CURVE
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The local temperature of the moderator water is determined mainly by the inlet
temperature, the pre-accident heat deposition rate (via neutron and gamma bombardment), the
power rundown after the LOCA, and the flow pattern inside the calandria tank. Figure 9.18
shows the configuration of the calandria heat removal system. Nozzles on each side of the tank
direct flow upwards and toward the center; the outlet flow is taken from the bottom of the tank.
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A typical calculated flow pattern is shown in Figure 9.19. These calculated temperatures are
modified by the static head on the particular channel in question (static head affects saturation
temperature) to arrive at a figure for the minimum available subcooling. Figure 9.20 shows a
typical resultant subcooling margin as a function of time after LOCA. The allowable maximum
calandria outlet temperature, moderator flow, and therefore the pumping power required for
moderator cooling are determined by this margin.
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FIGURE 9.18
END AND SIDE VIEWS OF CALANDRIA VESSEL
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FIGURE 9.19
FLOW PATTERN IN THE R-O PLANE (Z=2.925 m)
AT 100 PERCENT FULL POWER STEADY RATE
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Containment Response

Required containment functions are:
(a) Normal Operation
- protect reactor and equipment from external elements (keep the rain off).
- provide a well-defined access control barrier for operating staff.
- protect against external accident initiating events (e.g. blast, wind,
aircraft crash, etc.).
- provide means for controlling and monitoring ventilation flows around systems
containing radioactive materials.
(b) Post-Accident
- The functions related to containment of radioactive materials released in an accident are
shown in Figure 9.21.

Containment

Short Term Long Term
* ]
Effluent Effluent
Control Conltml
|
Isolation Chemistry
Envelope Control
Pressure Envelope Ventilation
Pressure Control Filters
Control I
Heat
Energy Removal
Absorption Depressurization
) Hydrogen Flow
Dousing Recombination
PPI649 9-21
FIGURE 9.21

POST-ACCIDENT CONTAINMENT FUNCTIONS

These containment functions can be accomplished in a number of different ways. Figures
9.22 to 9.25 show the major classes of containment systems now used in power reactors.

Referring back to Figure 9.21, in the 600 MW CANDU units short-term pressure control
is accomplished by a pressure-actuated dousing system located at the top of the containment
building. Redundant valves supply six sectors of dousing spray headers. Steam issuing from the
HT break is condensed by the spray; its energy appears as sensible heat in the water on the
building floor. Energy absorption by internal structures and containment walls is the second,
inherent, means of short-term pressure control.
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Short-term effluent control is supplied jointly by the building envelope and the isolation
mechanisms on the building ventilation system. Isolation usually is initiated by either high
pressure or high radiation levels in the ventilation duct.

In the long term, pressure control is achieved by removing stored and decay heat from
containment, by depressurization through filtered air discharge lines, and (if required) hydrogen
recombination to preclude the possibility of a hydrogen fire with its consequent sudden release of
heat energy. (Figures 9.26 and 9.27 show the amount of hydrogen generated in LOCA scenarios
with no emergency coolant injection, and typical peak overpressure values inside the vault. Both
figures are for Bruce B).
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FIGURE 9.26
HYDROGEN PRODUCTION IN LOECI SCENARIOS
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Effluent control in the long term is achieved by the sealed containment envelope, by water
chemistry control, and by the ventilation filters. Water chemistry control is important because the
amount of some radioactive materials in the vapor phase (available for release during overpressure
periods) is sensitive to the oxidation potential and pH of the water. Iodine-131 is the most
important isotope in this group. Ventilation filters consist of high- efficiency particulate (HEPA)
filters and activated charcoal beds in series. These filters are preceded by a ventilation drier and
(usually) a preheater to ensure the air passing through the charcoal filter remains above the
dewpoint temperature.

Typical short-term and long-term pressure transients in the CANDU 600 containment are

shown in Figures 9.28 and 9.29. Heat sources and sinks, and typical post-accident energy
balances, are shown in Figures 9.30 and 9.31.
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FIGURE 9.28
SHORT TERM INTACT CONTAINMENT PRESSURE TRANSIENT
FOR 80 PERCENT REACTOR OUTLET HEADER BREAK
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INTACT CONTAINMENT PRESSURE TRANSIENT UP TO ONE DAY
AFTER AN 80 PERCENT REACTOR OUTLET HEADER BREAK
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FIGURE 9.31
LONG TERM CONTAINMENT ENERGY SOURCES AND SINKS

Radioactivity Release from Containment

Figure 9.32 shows the various mechanisms that influence the amount of radioactive
material in each location inside the containment space at any point in time. A time-dependent
inventory calculation is done for each important isotope. Figure 9.33 shows a typical result for
iodine in air following a major release into containment for Bruce B. It can be seen that effective
iodine trapping in the water is an important release-control mechanism. In the long term iodine in
the form of organic iodides, which are difficult to filter, can be re-evolved into the air unless proper
water chemistry conditions are maintained.
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Controlled Leakage

NATURAL AND ENGINEERED MECHANISMS AFFECTING AIRBORNE
CONCENTRATION OF RADIONUCLIDES IN CONTAINMENT
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FIGURE 9.33
IODINE ACTIVITY Vs. TIME FOLLOWING
LARGE BREAK LOCA
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Figure 9.34 shows typical attenuation factors for iodine-131 for a major accident with
intact containment envelope. Of the ten orders of magnitude reduction achieved, two orders can
be attributed to emergency core cooling (ECI and moderator), three orders to the containment
function, and five orders to atmospheric dilution from the release point to the site boundary.
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FIGURE 9.34
TYPICAL ATTENUATION CANDU
(Large Break)

Summary

This completes a brief outline of the factors to be considered, and methods which are used,
to model the behavior of a CANDU plant following a loss of coolant accident. The prime purpose
of these analyses is to test the capability of the safety system designs to limit the public
consequences that might follow this kind of event. LOCA analysis is central to the safety design
of any pressurized - coolant reactor, because of the fact that one of the barriers to fission product
release is broken, the consequent reduction in fuel cooling, and the energetic release of coolant to
the containment space. In the case of CANDU, this accident also leads to a reactivity increase in
the core.

These analyses must not be taken to describe the expected sequence following an actual
accident; they are only stylized models used to test the limits of protection systems capabilities.
A real accident likely will arise from a special set of circumstances and will follow different
pathways in space and time.
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